Permutation Matrix

A *permutation matrix* is a square matrix¹ in which is zero everywhere apart from having only one '1' on every row and in every column. For example the following matrix is an example of a 3×3 permutation matrix:

$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}.$$

When a matrix or vector is pre-multiplied² by a permutation matrix then its effect is to rearrange its rows. For example, pre-multiplying a typical matrix or vector by the example permutation matrix above is illustrated by the following examples:

/0	1	0\/3	8	2\	/6	7	5\	$(0 \ 1 \ 0) (3) (8)$	$\boldsymbol{\gamma}$
0	0	1)(6	7	5)=	= 9	4	1)	$\begin{pmatrix} 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 8 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$]
\backslash_1	0	0//9	4	1/	\3	8	2/	$\begin{pmatrix} 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 2 \end{pmatrix} \begin{pmatrix} 3 \end{pmatrix}$	J

In this example the effect of pre-multiplication with the example permutation matrix is as follows:

/0	1	0\	replace row 1 with row 2,
0	0	1)	replace row 2 with row 3,
\backslash_1	0	0/	replace row 3 with row 1.

Hence a '1' in row *i* and column *j* in the permutation matrix has the effect of replacing row *i* by row *j* in the matrix or vector following pre-multiplication.

When a matrix or vector is post-multiplied by a permutation matrix then its effect is to rearrange its columns. For example, post-multiplying a typical matrix or vector by the example permutation matrix above is illustrated by the following examples:

$$\begin{pmatrix} 3 & 8 & 2 \\ 6 & 7 & 5 \\ 9 & 4 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 3 & 8 \\ 5 & 6 & 7 \\ 1 & 9 & 4 \end{pmatrix}, \qquad (3 \quad 8 \quad 2) \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} = (2 \quad 3 \quad 8).$$

The effect of the post-multiplication of a matrix or vector by a permutation matrix with a '1' in row *i* and column *j* has the effect of replacing column *j* by column *i*.

There are six 3×3 permutation matrices:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} and \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}.$$

Hence there are six possible outcomes of pre-multiplication with a 3×3 permutation matrix, there are six possible rearrangements of the rows, just as there are six possible permutations³ of three items, hence the term *permutation matrix*. (The same point can be made for the effect on columns following the post-multiplication with the permutation matrices.) In general there are $n! n \times n$ permutation matrices, just as there are n! permutations or arrangements of n objects.

¹ Matrix Definitions

² Matrix Arithmetic

³ Permutations

Transpose of a permutation matrix

The transpose of a permutation matrix is also a permutation matrix. For the example permutation matrix above, $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$, the transpose is $\begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$.

The transpose of a permutation is also its inverse. For the example above:

$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

In general if *P* is a permutation matrix then $PP^{T} = P^{T}P = I$ and $P^{T} = P^{-1}$.